

Electrical and Computer Engineering Department

First Semester 2021/2022

ENCS4320, Applied Cryptography Midterm Exam

Date: Tuesday, 30/11/2021 Time: 15:50 - 17:10 (80 minutes) Room: ALSADIK202, ALSADIK203

Sec1: Dr. Ahmad Alsadeh Sec2: Mr. Hanna Alzughbi

Student Name: ______Student ID: _____

Question #	Full Mark	Student's Mark
Q1	12	
Q2	18	
TOTAL	30	

Q1) (12 pts) Consider the most suitable answer choice

- 1. 1. Consider the Vigenere cipher over the lowercase English alphabet, where the key length can be anything from 8 to 12 characters. What is the size of the key space for this scheme?
 - A. 26!
 - B. 26¹²
 - C. 4×26^{12}

D. $26^8 + 26^9 + 26^{10} + 26^{11} + 26^{12}$

2. Let $M = C = K = \{0, 1, 2, ..., 255\}$ and consider the following cipher defined over (K, M, C): $E(k, m) = m + k \pmod{256}; D(k, c) = c - k \pmod{256}$. Does this cipher have perfect secrecy?

A. Yes, it does have perfect secrecy

- B. No, there is a simple attack on this cipher
- C. No, only the One Time Pad has perfect secrecy
- **3.** Let (E, D) be a (one-time) semantically secure cipher where the message and ciphertext space is
 - $\{0,1\}^n$. Is the encryption scheme E'(k,m) = E(k,m) || LSB(m) is (one-time) semantically secure?
 - A. Yes, it is secure
 - B. It depends on the attacker power
 - C. No, it is not secure
 - D. It depends on the message m
- **4.** Let $G: \{0,1\}^s \to \{0,1\}^n$ be a secure PRG. Is $G'(k) = G(k) \bigoplus 1^n$ is secure PRG?
 - A. Yes it is secure
 - B. No it is not secure
 - C. It depends on the distinguisher algorithm A
- 5. Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a secure PRF (i.e. a PRF where the key space, input space, and output space are all $\{0,1\}^n$ and say n = 128. Is $F'((k_1, k_2), x) = F((k_1, x) \parallel F(k_2, x)$ is a secure PRF?
 - A. Secure if $k_1 \neq k_2$
 - B. Not secure if $k_1 \neq k_2$
 - C. Secure if $k_1 = k_2$
- **6.** Let *m* be a message consisting of *l* AES blocks (say l = 100). Alice encrypts *m* using CBC mode and transmits the resulting ciphertext to Bob. Due to a network error, ciphertext block number l/2 is corrupted during transmission. All other ciphertext blocks are transmitted and received correctly. Once Bob decrypts the received ciphertext, how many plaintext blocks will be corrupted?
 - A. lB. l/2C. 1 + l/2D. 2
- **7.** Suppose Alice uses CBC Mode for encrypting a message *m*. However, she forgets the value she used for *IV*, but has *c* and *k*. Can she recover *m*?
 - A. Almost everything except m_1 (Where m_1 is the first block)
 - B. Can only recover m_{n-1}
 - C. Can only recover m_n
 - D. Almost everything expect m_1 and m_2

- **8.** To encrypt a series of plaintext blocks $m_1, m_2, ..., m_n$ using a block cipher *E* operating in electronic code book (ECB) mode, each ciphertext block $c_1, c_2, ..., c_n$ is computed as $c_i = E(k, m_i)$. Which of the following **is not** a property of this block cipher mode?
 - A. Any repeated plaintext blocks will result in identical corresponding ciphertext blocks
 - B. Decryption can be fully parallelized
 - C. If a ciphertext block is modified or corrupted, then after decryption the corresponding plaintext block and all the following plaintext blocks will be affected.
 - D. None of the above; that is, (a), (b), and (c) are all properties of the ECB block cipher mode
- **9.** To encrypt a series of plaintext blocks $m_1, m_2, ..., m_n$ using a block cipher *E* operating in cipher block chaining (CBC) mode, each ciphertext block $c_1, c_2, ..., c_n$ is computed as $c_i = E(k, m_i \oplus c_{i-1})$, where c_0 is a public initialization vector (IV) which should be different for each encryption session. Which of the following is a property of this block cipher mode?
 - A. Any repeated plaintext blocks will result in identical corresponding ciphertext blocks
 - B. Decryption can be fully parallelized
 - C. If a ciphertext block is modified or corrupted, then after decryption the corresponding plaintext block and all the following plaintext blocks will be affected
 - D. None of the above; that is, neither (a), (b), nor (c) are properties of the CBC block cipher mode
- **10.** Suppose a MAC system (S, V) is used to protect files in a file system by appending a MAC tag to each file. The MAC signing algorithm S is applied to the file contents and nothing else. What tampering attacks are not prevented by this system?
 - A. Swapping two files in the file system.
 - B. Replacing the tag and contents of one file with the tag and contents of a file from another computer protected by the same MAC system, but a different key.
 - C. Erasing the last byte of the file contents.
 - D. Changing the first byte of the file contents.
- **11.** A hash function is constructed based on the Data Encryption Standard (DES, which is a permutation of 64-bit strings) using the Merkle-Damgard transform. Roughly, how many messages must be hashed

so that we get a collision with probability greater than $\frac{1}{2}$?

- A. 32
- B. 64
- C. 2³²
- D. 2⁶⁴
- **12.** MACs provide the following security properties:
 - A. Message confidentiality
 - B. Message integrity
 - C. Message non repudiation
 - D. Message origin authority

Q2)

1. (2 pts) Let $G: \rightarrow \{0,1\}^n$ be a secure PRG. Define $G'(k_1, k_2) = G(k_1) \wedge G(k_2)$ where \wedge is the bitwise AND function. Consider the following statistical test A on $\{0,1\}^n$: A(x) outputs LSB(x), the least significant bit of x. What is $Adv_{PRG}[A, G']$? You may assume that LSB(G(k)) is 0 for exactly half the seeds k in K.

For a random string x we have Pr[A(x)=1]=1/2

but for a pseudorandom string $G'(k_1, k_2)$ we have $Pr_{k_1, k_2}[A(G'(k_1, k_2))=1]=1/2*1/2=1/4$

2. (2 pts) A Feistel transformation is a function of the form

$$E(k, (L_0, R_0)) = (R_0, L_0 \oplus f(k, R_0)) = (L_1, R_1),$$

where K is the key, L_0 , R_0 , L_1 , R_1 are each n bit words, and $f(K, R_0)$ is an arbitrary function from n bits to n bits.

Prove that every Feistel transformation is invertible. That is, show how to find L_0 , and R_0 if L_1 , R_1 , and K are known.

Given (L_1, R_1) , we immediately have $R_0 = L_1$

Then $R_1 = L_0 \oplus f(k, R_0) = L_0 \oplus f(k, L_1)$, so

 $L_0 = R_1 \oplus f(k, L_1).$

That is

$$(L_0, R_0) = (R_1 \oplus f(k, L_1), L_1)$$

3. (2 pts) Let E_K denote the encryption function of a block cipher with key $k \in \{0,1\}^n$. Suppose we try to strengthen this cipher by using two keys, $k_1, k_2 \in \{0,1\}^n$ and encrypting message m by the two keys $E(k_2, E(k_1, m))$. Describe a known plaintext attack on this cryptosystem that is faster than exhaustive search. How much faster is it, and how much memory does it use?

```
Meet in the middle attack

Given plaintext/ ciphertext pair (m, c), build list

A = \{(E(K_1, m), K_1)\} and B = \{D(K_2, c), K_2\}.

look for (x, K<sub>1</sub>)

Time = 2<sup>n</sup>.log(2<sup>n</sup>) + 2<sup>n</sup>.log(2<sup>n</sup>) \langle 2^{2n}, space \approx 2^n
```

4. (3 pts) Suppose that using commodity hardware it is possible to build a computer for about \$200 that can brute force about 1 billion AES keys per second. Suppose an organization wants to run an exhaustive search for a single 128-bit AES key and is willing to spend 4 trillion dollars to buy these machines. How long would it take the organization to brute force this single 128-bit AES key with these machines? Ignore additional costs such as power and maintenance.

machines = 4*10¹²/200 = 2*10¹⁰
keys processed per sec = 10⁹ * (2*10¹⁰) = 2*10¹⁹
seconds = 2¹²⁸ / (2*10¹⁹) = 17,014,118,346,046,923,173.168730371588 = 1.7*10¹⁹
17,014,118,346,046,923,173.168730371588/ (60x60x24x365) = 539,514,153,540.3 years

The answer is about 540 billion years.

5. (2 pts) Let (S, V) be a secure MAC defined over (K, M, T) where $M = \{0,1\}^n$ and $T = \{0,1\}^{128}$. That is, the key space is K, message space is $\{0,1\}^n$, and tag space is $\{0,1\}^{128}$. Explain whether of the following is a secure MAC or not.

 $S'(k,m) = S(k,m \oplus m)$ and $V'(k,m,t) = V(k,m \oplus m,t)$

This construction is insecure because an adversary can request the tag for $m = 0^n$

and thereby obtain a tag for any message.

This follows from the fact that $m \oplus m = 0$

 $S'(k,m_0) = S'(k,m_1)$, while $m_0 \neq m_1$ Always give the same tag

6. (**2 pts**) Let $H : M \to T$ be a collision resistant hash function. Is

$$H'(m) = H(m) \oplus H(m)$$

is collision resistant? Explain your answer.

H'(m) = 0, for $\forall m \in \mathcal{M}$

This construction is not collision resistant because $H(m_0) = H(m_1)$

7. (2 pts) Suppose $F: K \times X \longrightarrow Y$ is a secure PRF with $Y = \{0,1\}^{10}$. Is the derived MAC I_F a secure MAC system? Explain

No tags are too short: anyone can guess the tag for any message

$$Adv[A, I_f] = \frac{1}{1024}$$

8. (3 pts) The rawCBC is insecure MAC; explain the steps for attacking rawCBC construction. raw CBC

Using chosen message attack

Adversary works as follows:

- 1- Choose an arbitrary one-block message $m \in X$
- **2-** Request tag for m. Get t = F(k, m)
- 3- Output t as MAC forgery for the 2-block message $m' = (m, t \oplus m)$

Indeed: rawCBC(k, (m, $t \oplus m$)) = $F(k, F(k, m) \oplus (t \oplus m)) = F(k, t \oplus (t \oplus m)) = t$

t is a valid MAC for the 2-block message $m' = (m, t \oplus m)$

So the adversary was able to produce this valid tag *t* for this 2-block message that he never queried. And therefore, he was able to break the MAC